Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tetraaquabis[3-(pyridin-4-yl)benzoatoκN]manganese(II)

Ru-Qin Gao* and Guo-Ting Li

Department of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
Correspondence e-mail: gaoruqin@ncwu.edu.cn
Received 31 March 2012; accepted 4 April 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.034 ; w R$ factor $=0.079$; data-to-parameter ratio $=11.9$.

In the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$, the Mn^{2+} ion lies on a twofold rotation axis and has a distorted $\mathrm{N}_{2} \mathrm{O}_{4}$ octahedral coordination geometry formed by four water O atoms in the equatorial plane and two apical pyridyl N atoms. A three-dimensional network is formed in the crystal structure by multiple $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the coordinating water molecules and the free carboxylate groups.

Related literature

For pyridyl-multicarboxylate-metal frameworks, see: Huang et al. (2007). For 3-pyridin-4-ylbenzoate compounds, see: Wu et al. (2011) For the isotypic Co complex, see: Wang \& Li (2011).

Experimental

Crystal data
$\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$M_{r}=523.39$
Monoclinic, $C 2 / c$

$$
\begin{aligned}
& a=24.935(3) \AA \\
& b=7.1911(6) \AA \\
& c=13.9283(16) \AA
\end{aligned}
$$

$\beta=112.199(13)^{\circ}$
$V=2312.4$ (4) \AA^{3}
$\mu=0.63 \mathrm{~mm}^{-1}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Siemens SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.875, T_{\text {max }}=0.913$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.079$
$S=1.05$
2035 reflections
171 parameters
$T=293 \mathrm{~K}$
$0.24 \times 0.20 \times 0.16 \mathrm{~mm}$

4456 measured reflections
2035 independent reflections
1673 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$ independent and constrained refinement
$\Delta \rho_{\max }=0.19 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\text {i }}$	0.86 (2)	1.91 (2)	2.732 (2)	160 (2)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O} 1^{\text {ii }}$	0.80 (2)	1.92 (3)	2.715 (2)	175 (2)
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1^{\text {iii }}$	0.86 (3)	1.86 (3)	2.728 (2)	176 (2)
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 2^{\text {iv }}$	0.84 (2)	1.92 (2)	2.726 (2)	161 (2)

Symmetry codes: (i) $-x+\frac{1}{2},-y+\frac{1}{2},-z+2$; (ii) $x-\frac{1}{2}, y+\frac{1}{2}, z$; (iii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$, (iv) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by the Natural Science Foundation of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5868).

References

Huang, Y., Wu, B., Yuan, D., Xu, Y., Jiang, F. \& Hong, M. (2007). Inorg. Chem. 46, 1171-1176.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wang, H.-R. \& Li, G.-T. (2011). Acta Cryst. E67, m1743.
Wu, B. L., Wang, R. Y., Zhang, H. Y. \& Hou, H. W. (2011). Inorg. Chim. Acta, 375, 2-10.

supplementary materials

Acta Cryst. (2012). E68, m562 [doi:10.1107/S1600536812014602]

Tetraaquabis[3-(pyridin-4-yl)benzoato- $\kappa \boldsymbol{N}$]manganese(II)

Ru-Qin Gao and Guo-Ting Li

Comment

Pyridyl-containing multi-carboxylic acids have been extensively investigated on the construction of various metalorganic frameworks (Huang et al., 2007). Pyridylbenzoate ligands which possess a pyridyl group and a benzoic acid group are typical unsymmetrical spacers. Very recently, a serial of coordination polymers of 3-pyridin-4-ylbenzoic acid (PBC) was synthesized and characterized (Wu, et al., 2011). Herein we report a new $\mathrm{Mn}(\mathrm{II})$ complex with (PBC), namely, $\left[\mathrm{Mn}(\mathrm{PBC})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right](1)$ which is isostructural with the complex $\left[\mathrm{Co}(\mathrm{PBC})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ (Wang \& Li, 2011).
As showed in Fig. 1, (1) is a mononuclear complex with a twofold axis passing through the Mn (II) center along b axis and equally splitting the whole molecule. In (1) the $\mathrm{Mn}(\mathrm{II})$ center is ligated by four O of coordinated water molecules in the equatorial plane, and two PBC acting as monodentate ligands occupy the axial positions through their pyridyl nitrogen atoms coordinating to $\mathrm{Mn}(\mathrm{II})$. Thus the $\mathrm{Mn}(\mathrm{II})$ ion is in a six-coordinated octahedral geometry. The bond distances of $\mathrm{Mn}-\mathrm{O}$ and $\mathrm{Mn}-\mathrm{N}$ range from 2.1867 (16) to 2.2661 (16) \AA, while the in-plane and axis-transition angles are 173.04 (6) and 175.06 (8) ${ }^{\circ}$, respectively, indicating a slight distortion of the octahedral coordination sphere around the $\mathrm{Mn}(\mathrm{II})$ center.

Further aggregation of the monomers (1) is formed by the multiple hydrogen-bonding between the coordinated water molecules (as donors) and the uncoordinated carboxylate groups (as acceptors) (Table 1). Hydrogen-bonding system among monomers (1) is rather complicated: each water molecule forms two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with carboxylate groups of neighbouring complex molecules, while every carboxylate group of PBC forms three hydrogen bonds. Consequently, every monomer acts as a novel six-connected supramolecular synthon to connect with six adjacent monomers. Notably, the hydrogen-bonding models of the carboxyl group of PBC play an important role in the formation of crystal structure of (1). For example, as shown in Fig. 2, the O1 atom of the carboxylate group of PBC in a hydrogenbonding bridging mode ligates to two water molecules from two neighboring monomers, and as a result, monomers (1) are regularly arrayed in $a b$ plane and linked into two-dimensional layers by strong hydrogen bonding (O3 $\cdots \mathrm{O} 1,2.715$ (2) \AA; O4 $\cdots \mathrm{O} 1,2.728$ (2) \AA). The layer structure is stabilized by forceful face-to-face $\pi \cdots \pi$ stacking interactions between adjacent benzoicate groups and pyridyl groups of PBC with a centroid to centroid distance of 3.62 (1) \AA. Intriguingly, the benzoicate group and pyridyl group of PBC distort to $27.6(0)^{\circ}$ to meet the formation of hydrogen bonding. The layers are further bound together to create the three-dimensional supramolecular architecture by hydrogen bonds between the O 2 atom of the carboxylate group of PBC and two water molecules in the adjacent complex molecue. monomer.

Experimental

The title compound, (1), was prepared according to the following process. A mixture of $\mathrm{MnCO}_{3}(0.012 \mathrm{~g}, 0.1 \mathrm{mmol})$, PBC ($0.040 \mathrm{~g}, 0.2 \mathrm{mmol}$) and deionized water (10 ml) was sealed into a 25 ml Teflon-lined stainless autoclave. The autoclave was heated at $160^{\circ} \mathrm{C}$ for four days. As cooled to room temperature gradually, pale yellow needle crystals of (1) suitable for X-ray analysis were obtained in 64% yield (based on Mn).

Refinement

All H atoms were located in a difference map. The coordinates of the water H atoms were refined with $\mathrm{U}(\mathrm{H})$ set to $1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{O})$. H atoms bonded to C were refined as riding with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.

Computing details

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1

ORTEP diagram of (1) with atom numbering scheme (30% probability ellipsoids for all non-hydrogen atoms). Symmetry code: (i) $-x, y,-z+3 / 2$.

Figure 2

View of regular arrangement of monomers (1) directed by strong hydrogen bonding to form two-dimensional layers and face-to-face $\pi \cdots \pi$ stacking interactions between adjacent benzoicate and pyridyl groups of PBC. Symmetry codes: (i) $-x$, $y,-z+3 / 2$; (ii) $x-1 / 2, y+1 / 2, z$; (iii) $-x+1 / 2, y+1 / 2,-z+3 / 2$; (iv) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (v) $x-1 / 2, y-1 / 2, z$.

Tetraaquabis[3-(pyridin-4-yl)benzoato- κN] manganese(II)

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$M_{r}=523.39$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=24.935$ (3) \AA
$b=7.1911$ (6) \AA

$$
\begin{aligned}
& c=13.9283(16) \AA \\
& \beta=112.199(13)^{\circ} \\
& V=2312.4(4) \AA^{3} \\
& Z=4 \\
& F(000)=1084 \\
& D_{\mathrm{x}}=1.503 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1769 reflections
$\theta=3.0-27.6^{\circ}$
$\mu=0.63 \mathrm{~mm}^{-1}$

Data collection

Siemens SMART CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scan
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.875, T_{\text {max }}=0.913$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.079$
$S=1.05$
2035 reflections
171 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$T=293 \mathrm{~K}$
Needle, yellow
$0.24 \times 0.20 \times 0.16 \mathrm{~mm}$

4456 measured reflections
2035 independent reflections
1673 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-29 \rightarrow 29$
$k=-5 \rightarrow 8$
$l=-16 \rightarrow 16$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0389 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors $(\mathrm{gt}) \mathrm{etc}$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Mn1	0.0000	$0.30640(6)$	0.7500	$0.03055(16)$
O1	$0.46120(6)$	$0.2912(2)$	$0.87784(13)$	$0.0494(4)$
O2	$0.40494(7)$	$0.2263(2)$	$0.96408(12)$	$0.0557(5)$
O3	$0.03234(7)$	$0.5054(2)$	$0.87792(12)$	$0.0434(4)$
O4	$-0.02832(7)$	$0.0811(2)$	$0.63641(12)$	$0.0414(4)$
N1	$0.08789(7)$	$0.3200(2)$	$0.73735(13)$	$0.0343(4)$
C1	$0.41251(9)$	$0.2746(3)$	$0.88379(18)$	$0.0373(5)$
C2	$0.35888(8)$	$0.3161(3)$	$0.78874(16)$	$0.0307(5)$
C3	$0.30485(8)$	$0.3071(3)$	$0.79533(16)$	$0.0304(4)$
H3	0.3024	0.2747	0.8597	0.036^{*}
C4	$0.25382(8)$	$0.3442(3)$	$0.71007(15)$	$0.0296(5)$
C5	$0.25909(9)$	$0.3921(3)$	$0.61674(16)$	$0.0372(5)$

H5	0.2253	0.4182	0.5574	0.045^{*}
C6	$0.31246(9)$	$0.4019(3)$	$0.60960(16)$	$0.0422(6)$
H6	0.3151	0.4351	0.5455	0.051^{*}
C7	$0.36272(9)$	$0.3639(3)$	$0.69523(17)$	$0.0372(5)$
H7	0.3995	0.3707	0.6895	0.045^{*}
C8	$0.19674(8)$	$0.3344(3)$	$0.71925(15)$	$0.0294(5)$
C9	$0.19034(9)$	$0.3677(3)$	$0.81302(16)$	$0.0368(5)$
H9	0.2233	0.3967	0.8732	0.044^{*}
C10	$0.13683(9)$	$0.3587(3)$	$0.81876(17)$	$0.0384(5)$
H10	0.1341	0.3812	0.8840	0.046^{*}
C11	$0.09364(9)$	$0.2880(3)$	$0.64725(17)$	$0.0362(5)$
H11	0.0598	0.2597	0.5884	0.043^{*}
C12	$0.14589(9)$	$0.2939(3)$	$0.63492(16)$	$0.0364(5)$
H12	0.1473	0.2703	0.5688	0.044^{*}
H3A	$0.0499(10)$	$0.451(3)$	$0.9365(18)$	0.055^{*}
H4A	$-0.0072(10)$	$-0.013(3)$	$0.6343(18)$	0.055^{*}
H3B	$0.0120(11)$	$0.588(3)$	$0.8818(18)$	0.055^{*}
H4B	$-0.0448(10)$	$0.126(3)$	$0.5770(19)$	0.055^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	$0.0213(3)$	$0.0359(3)$	$0.0354(3)$	0.000	$0.0119(2)$	0.000
O1	$0.0229(8)$	$0.0438(9)$	$0.0791(12)$	$-0.0003(7)$	$0.0165(8)$	$0.0015(8)$
O2	$0.0358(9)$	$0.0824(12)$	$0.0427(9)$	$-0.0011(8)$	$0.0076(8)$	$0.0058(9)$
O3	$0.0351(10)$	$0.0453(10)$	$0.0458(10)$	$0.0083(7)$	$0.0107(8)$	$-0.0068(8)$
O4	$0.0409(10)$	$0.0388(9)$	$0.0435(9)$	$0.0052(7)$	$0.0147(8)$	$-0.0010(7)$
N1	$0.0263(9)$	$0.0370(10)$	$0.0409(10)$	$0.0025(8)$	$0.0139(8)$	$0.0045(8)$
C1	$0.0272(12)$	$0.0313(11)$	$0.0493(13)$	$-0.0015(10)$	$0.0098(10)$	$-0.0065(10)$
C2	$0.0238(11)$	$0.0273(10)$	$0.0420(12)$	$-0.0025(9)$	$0.0136(9)$	$-0.0063(9)$
C3	$0.0271(11)$	$0.0300(10)$	$0.0365(11)$	$-0.0015(9)$	$0.0149(9)$	$-0.0028(9)$
C4	$0.0254(11)$	$0.0277(11)$	$0.0388(11)$	$-0.0013(9)$	$0.0157(9)$	$-0.0013(9)$
C5	$0.0293(12)$	$0.0440(12)$	$0.0368(12)$	$-0.0019(10)$	$0.0110(10)$	$0.0020(10)$
C6	$0.0404(14)$	$0.0547(14)$	$0.0383(12)$	$-0.0023(12)$	$0.0227(11)$	$0.0028(11)$
C7	$0.0294(12)$	$0.0384(12)$	$0.0508(13)$	$-0.0050(10)$	$0.0229(11)$	$-0.0056(10)$
C8	$0.0248(11)$	$0.0276(11)$	$0.0373(11)$	$0.0021(9)$	$0.0134(9)$	$0.0050(9)$
C9	$0.0255(11)$	$0.0453(12)$	$0.0387(12)$	$-0.0006(10)$	$0.0110(10)$	$-0.0005(10)$
C10	$0.0287(12)$	$0.0524(13)$	$0.0366(11)$	$0.0023(10)$	$0.0152(10)$	$0.0000(10)$
C11	$0.0241(11)$	$0.0423(12)$	$0.0398(12)$	$0.0009(10)$	$0.0094(9)$	$0.0006(10)$
C12	$0.0295(12)$	$0.0443(12)$	$0.0377(11)$	$0.0001(10)$	$0.0154(10)$	$-0.0011(10)$

Geometric parameters $\left(\stackrel{A}{A},{ }^{\circ}\right)$

$\mathrm{Mn} 1-\mathrm{O} 4$	$2.1867(16)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.400(3)$
$\mathrm{Mn} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.1867(16)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{Mn} 1-\mathrm{O} 3$	$2.1878(16)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.398(3)$
$\mathrm{Mn} 1-\mathrm{O}^{\mathrm{i}}$	$2.1878(16)$	$\mathrm{C} 4-\mathrm{C} 8$	$1.478(3)$
$\mathrm{Mn} 1-\mathrm{N} 1$	$2.2661(16)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.373(3)$
$\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.2661(16)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{O} 1-\mathrm{C} 1$	$1.253(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.392(3)$

$\mathrm{O} 2-\mathrm{C} 1$	1.252 (3)	C6-H6	0.9500
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	0.86 (2)	C7-H7	0.9500
O3-H3B	0.80 (2)	C8-C9	1.395 (3)
O4-H4A	0.86 (3)	C8-C12	1.395 (3)
O4-H4B	0.84 (2)	C9-C10	1.368 (3)
N1-C11	1.336 (3)	C9-H9	0.9500
N1-C10	1.344 (3)	C10-H10	0.9500
C1-C2	1.514 (3)	C11-C12	1.378 (3)
C2-C7	1.385 (3)	C11-H11	0.9500
C2-C3	1.386 (3)	C12-H12	0.9500
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{O} 4{ }^{\text {i }}$	84.40 (9)	C2-C3-C4	121.98 (18)
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{O} 3$	173.04 (6)	C2-C3-H3	119.0
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{O} 3$	88.64 (6)	C4-C3-H3	119.0
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{O} 3{ }^{\text {i }}$	88.64 (6)	C5-C4-C3	117.47 (18)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O}^{\mathrm{i}}$	173.04 (6)	C5-C4-C8	121.60 (18)
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 3^{\text {i }}$	98.31 (10)	C3-C4-C8	120.92 (18)
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{N} 1$	91.89 (6)	C6-C5-C4	120.93 (19)
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1$	91.76 (6)	C6-C5-H5	119.5
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{N} 1$	88.02 (6)	C4-C5-H5	119.5
O3 ${ }^{\text {i }}$ - $\mathrm{Mn} 1-\mathrm{N} 1$	88.75 (6)	C5-C6-C7	120.74 (19)
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	91.76 (6)	C5-C6-H6	119.6
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	91.89 (6)	C7-C6-H6	119.6
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	88.75 (6)	C2-C7-C6	119.66 (19)
O3 ${ }^{\text {i }}$ - $\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	88.02 (6)	C2-C7-H7	120.2
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	175.06 (8)	C6-C7-H7	120.2
$\mathrm{Mn} 1-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	112.0 (16)	C9-C8-C12	115.78 (18)
$\mathrm{Mn} 1-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	119.7 (18)	C9-C8-C4	121.83 (18)
$\mathrm{H} 3 \mathrm{~A}-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	113 (2)	C12-C8-C4	122.39 (18)
$\mathrm{Mn} 1-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~A}$	124.7 (16)	C10-C9-C8	120.39 (19)
Mn1-O4-H4B	109.7 (17)	C10-C9-H9	119.8
H4A-O4-H4B	110 (2)	C8-C9-H9	119.8
C11-N1-C10	116.28 (18)	N1-C10-C9	123.71 (19)
C11-N1-Mn1	121.06 (14)	N1-C10-H10	118.1
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{Mn} 1$	122.66 (14)	C9-C10-H10	118.1
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	124.2 (2)	N1-C11-C12	123.65 (19)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.03 (19)	N1-C11-H11	118.2
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	118.8 (2)	C12-C11-H11	118.2
C7-C2-C3	119.22 (19)	C11-C12-C8	120.20 (19)
C7- $22-\mathrm{C} 1$	121.28 (19)	C11-C12-H12	119.9
C3-C2-C1	119.50 (18)	C8- $\mathrm{C} 12-\mathrm{H} 12$	119.9

Symmetry code: (i) $-x, y,-z+3 / 2$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.86(2)$	$1.91(2)$	$2.732(2)$	$160(2)$
$\mathrm{O} 3 — \mathrm{H} 3 B \cdots 1^{\mathrm{iii}}$	$0.80(2)$	$1.92(3)$	$2.715(2)$	$175(2)$

supplementary materials

$\mathrm{O} 4 — \mathrm{H} 4 A \cdots \mathrm{O}^{\mathrm{iv}}$	$0.86(3)$	$1.86(3)$	$2.728(2)$	$176(2)$
$\mathrm{O} 4-\mathrm{H} 4 B \cdots 2^{\mathrm{v}}$	$0.84(2)$	$1.92(2)$	$2.726(2)$	$161(2)$

Symmetry codes: (ii) $-x+1 / 2,-y+1 / 2,-z+2$; (iii) $x-1 / 2, y+1 / 2, z$; (iv) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (v) $x-1 / 2,-y+1 / 2, z-1 / 2$.

